A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention.

نویسندگان

  • Jacob Richards
  • Kit-Yan Cheng
  • Sean All
  • George Skopis
  • Lauren Jeffers
  • I Jeanette Lynch
  • Charles S Wingo
  • Michelle L Gumz
چکیده

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3β-dehydrogenase isomerase (3β-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3β-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3β-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes.

The circadian clock protein period 1 (Per1) contributes to the regulation of expression of the α subunit of the renal epithelial sodium channel at the basal level and in response to the mineralocorticoid hormone aldosterone. The goals of the present study were to define the role of Per1 in the regulation of additional renal sodium handling genes in cortical collecting duct cells and to evaluate...

متن کامل

Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells.

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated ...

متن کامل

Inhibition of αENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1δ/ε.

Increasing evidence suggests that the circadian clock plays an important role in the control of renal function and blood pressure. We previously showed that the circadian clock protein Period (Per)1, positively regulates the expression of the rate limiting subunit of the renal epithelial sodium channel (αENaC), which contributes to blood pressure regulation. Casein kinases 1δ and 1ε (CK1δ/ε) ar...

متن کامل

Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of αENaC in renal cortical collecting duct cells

Renal function and blood pressure (BP) exhibit a circadian pattern of variation, but the molecular mechanism underlying this circadian regulation is not fully understood. We have previously shown that the circadian clock protein Per1 positively regulates the basal and aldosterone-mediated expression of the alpha subunit of the renal epithelial sodium channel (αENaC). The mechanism of this regul...

متن کامل

The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice.

The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the alpha subunit of the epithelial sodium channel (alphaENaC). We previously used microarray technology to identify the immediat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 12  شماره 

صفحات  -

تاریخ انتشار 2013